
The Lost Chapter

A Modem Dialer

1 Introduction

Programs that deal with modems have always had a hard time coping with the wide
variety of modems that are available. On most UNIX systems there are two programs
that handle modems. The first is a remote login program that lets us dial some other
computer, log in, and use that system. In the System V world this program is called cu,
while Berkeley systems call it tip. Both programs do similar things, and both have
knowledge of many different types of modems. The other program that uses a modem
is uucico, part of the UUCP package. The problem is that knowledge that a modem is
being used is often built into these programs, and if we want to write some other
program that needs a modem, we have to perform many of the same tasks. Also, if we
want to change these programs to use some form of communication instead of a modem
(such as a network connection), major changes are often required.

In this chapter we develop a separate program that handles all the details of modem
handling. This lets us isolate all these details into a single program, instead of having it
spread through multiple programs. (This program was motivated by the connection
server described in Presotto and Ritchie [1990].) To use this program we have to be able
to invoke it and have it pass back a file descriptor, as we described in Section 17.4. We
then use this program in developing a remote login program (similar to cu and tip).

2 Histor y

The cu(1) command (which stands for ‘‘call UNIX’’) appeared in Version 7. But it
handled only one particular ACU (automatic call unit). At Berkeley, Bill Shannon
modified cu, and it appeared in 4.2BSD as the tip(1) program. The biggest change was
the use of a text file (/etc/remote) to contain all the information for various systems



2 A Modem Dialer The Lost Chapter

(phone number, preferred dialer, baud rate, parity, flow control, etc.). This version of
tip supported about six different call units and modems, but to add support for some
other type of modem required source code changes.

Along with cu and tip, the UUCP system also accessed modems and automatic
call units. UUCP managed locks on different modems, so that multiple instances of
UUCP could be running at the same time. The tip and cu programs had to honor the
UUCP locking protocol, to avoid interfering with UUCP. On the BSD systems, UUCP
developed its own set of dialer functions. These functions were link edited into the
UUCP executable, which meant the addition of a new modem type required source
code changes.

SVR2 provided a dial(3) function that attempted to isolate the unique features of
modem dialing into a single library function. It was used by cu, but not by UUCP. This
function was in the standard C library, so it was available to any program.

The Honey DanBer UUCP system [Redman 1989] took the modem commands out
of the C source files and put them into a Dialers file. This allowed the addition of
new modem types without having to modify the source code. But the functions used by
cu and UUCP to access the Dialers file were not generally available. This means that
without redeveloping all the code to process the dialing information in the Dialers
file, programs other than cu and UUCP couldn’t use this file.

Throughout all these versions of cu, tip, and UUCP, locking was required to
assure only a single program accessed a single device at a time. Since all these
programs worked across many different systems, earlier versions of which provided no
record locking, a rudimentary form of file locking was used. This could lead to lock
files being left around after a program crashed, and ad hoc techniques were developed
to handle this. (We can’t use record locking on special device files, so record locking by
itself doesn’t provide a complete solution.)

3 Program Design

Let’s detail the features that we want the modem dialer to have.

1. It must be possible to add new modem types without requiring source code
changes.

To obtain this feature, we’ll use the Honey DanBer Dialers file. We’ll put all
the code that uses this file to dial the modem into a daemon server, so any
program can access it using the client–server functions from Section 17.2.2.

2. Some form of locking must be used so that the abnormal termination of a
program holding a lock automatically releases the lock. Ad hoc techniques,
such as those still used by most versions of cu and UUCP, should finally be
discarded, since better methods exist.

We’ll let the server daemon handle all the device locking. Since the
client–server functions from Section 17.2.2 automatically notify the server when
a client terminates, the daemon can release any locks that the process had.



Section 3 Program Design 3

3. New programs must be able to use all the features that we develop. A new
program that deals with a modem should not have to reinvent the wheel.
Dialing any type of modem should be as simple as a function call.

For this feature, we’ll let the central server daemon do all the dialing, passing
back a file descriptor.

4. Client programs, such as cu and tip, shouldn’t need special privileges. They
should not be set-user-ID programs.

We’ll give the special privileges to the server daemon, allowing its clients to run
without any special privileges.

Obviously we can’t change the existing cu, tip, and UUCP programs, but we should
make it easier for others to build on this work. Also, we should take the best features of
the existing UNIX dialing programs.

Figure 1 shows the arrangement of the client and server.

server

client

(1) request = call
remote system

(4) reply = file
descriptor

(2)
Systems,
Devices, and
Dialers files

(3) dial modem
modem

(5) communication with remote system

Figure 1 Overview of client and server.

The steps involved in establishing communications with a remote system are as follows:

0. The server is started.

1. The client is started and opens a connection to the server, using the cli_conn
function (Section 17.2.2). The client sends a request for the server to call the
remote system.

2. The server reads the Systems, Devices, and Dialers files to determine how
to call the remote system. (We describe these files in the next section.) If a
modem is being used, the Dialers file contains all the modem-specific
commands to dial the modem.

3. The server opens the modem device and dials the modem. This can take a
while (typically around 15–30 seconds). The server handles all locking of this
device, to avoid interfering with other users of this device.

4. If the dialing was successful, the server passes back the open file descriptor for
the modem device to the client. We use our functions from Section 17.4 to send
and receive the descriptor.



4 A Modem Dialer The Lost Chapter

5. The client communicates directly with the remote system. The server is not
involved in this communication—the client reads and writes the file
descriptor returned in step 4.

The communication between the client and server (steps 1 and 4) is across a full-duplex
pipe (an s-pipe, a term we introduced in Section 17.4 to represent either a STREAMS
pipe or a UNIX domain socket being used as a pipe). When the client is finished
communicating with the remote system it closes this s-pipe (normally just by
terminating). The server notices this close and releases the lock on the modem device.

4 Data Files

In this section we describe the three files used by the Honey DanBer UUCP system:
Systems, Devices, and Dialers. There are many fields in these files that are used by
the UUCP system. We don’t describe these additional fields (or the UUCP system) in
detail. Refer to Redman [1989] for additional details.

Figure 2 shows the six fields from the Systems file in a tabular format.

name time type class phone login

host1 Any ACU 19200 5551234 (not used)
host1 Any ACU 9600 5552345 (not used)
host1 Any ACU 2400 5556789 (not used)
modem Any modem 19200 - (not used)
laser Any laser 19200 - (not used)

Figure 2 The Systems file.

The name is the name of the remote system. We use this in commands of the form cu
host1, for example. Note that we can have multiple entries for the same remote
system. These entries are tried in the order in which they appear in the file. The entries
named modem and laser are for connecting directly to a serial modem and a serial
laser printer. We don’t need to dial a modem to connect to these devices, but we still
need to open the appropriate terminal line, and handle the appropriate locks.

time specifies the time-of-day and days of the week to call this host. This is a UUCP
field. The type field specifies which entry in the Devices file is to be used for this name.
The class field is really the line speed to be used (baud rate). phone specifies the phone
number for entries with a type of ACU. For other entries the phone field is just a
hyphen. The final field, login, is the remainder of the line. It is a series of strings used
by UUCP to log in to the remote system. We don’t need this field.

The Devices file contains information on the modems and directly connected
hosts. Figure 3 shows the five fields in this file. The type field matches an entry in the
Systems file with an entry in the Devices file. The class field must also match the
corresponding field in the Systems file. It normally specifies the line speed.

The actual name of a device is obtained by prefixing the line field with /dev/. In
this example the actual devices are /dev/cua0, /dev/ttya, and /dev/ttyb. The
next field, line2, is not used.



Section 4 Data Files 5

type line line2 class dialer

ACU cua0 - 19200 tbfast
ACU cua0 - 9600 tb9600
ACU cua0 - 2400 tb2400
ACU cua0 - 1200 tb1200

modem ttya - 19200 direct
laser ttyb - 19200 direct

Figure 3 The Devices file.

The final field, dialer, matches the corresponding entry in the Dialers file. For the
directly connected entries this field is direct.

Figure 4 shows the format of the Dialers file. This is the file that contains all the
modem-specific dialing commands.

dialer sub handshake

tb9600 =W-, "" \dA\pA\pA\pTQ0S2=255S12=255s50=6s58=2s68=255\r\c
OK\r \EATDT\T\r\c CONNECT\s9600 \r\c ""

tbfast =W-, "" \dA\pA\pA\pTQ0S2=255S12=255s50=255s58=2s68=255s110=1s111=30\r\c
OK\r \EATDT\T\r\c CONNECT\sFAST

Figure 4 The Dialers file.

We show only two entries for this file—we don’t show the entries for tb1200 and
tb2400 that were referenced in the Devices file. The handshake field is contained on a
single line. We have broken it into two lines to fit on the page.

The dialer field is used to locate the matching entry from the Devices file. The sub
field specifies substitutions to be performed for an equals sign and a minus sign that
appear in a phone number. In the two entries in Figure 4 this field says to substitute a W
for an equals sign, and a comma for a minus sign. This allows the phone numbers in
the Systems file to contain an equals sign (meaning ‘‘wait for dialtone’’) and a minus
sign (meaning ‘‘pause’’). The translation of these two characters to whatever each
particular modem requires is specified by the Dialers file.

The final field, handshake, contains the actual dialing instructions. It is a sequence of
blank-separated strings called expect–send strings. We expect (i.e., read until we
match) the first string and then send (i.e., write) the next string. Let’s look at the
tbfast entry as an example. This entry is for a Telebit Trailblazer modem in its PEP
(packetized ensemble protocol) mode.

1. The first expect string is empty, meaning ‘‘expect nothing.’’ We always
successfully match this empty string.

2. We send the next string. Special send sequences are specified with the backslash
character. \d causes a delay for 2 seconds. We then send an A. We pause for
one-half second (\p), send another A, pause, send another A, and pause again.
We then send the remaining characters in the string, starting with T. These



6 A Modem Dialer The Lost Chapter

commands all set parameters in the modem. The \r sends a carriage return and
the final \c says not to write the normal newline at the end of the send string.

3. We read from the modem until we receive the string OK\r. (Again, the
sequence \r means a carriage return.)

4. The next send string begins with \E. This enables echo checking: each time we
send a character to the modem, we read back until the character is echoed. We
then send the four characters ATDT. The next special character, \T, causes the
phone number to be substituted. This is followed by a carriage return; the \c
prevents the normal newline at the end of the send string from being sent.

5. The final expect string waits for CONNECT FAST to be returned by the modem.
(The sequence \s means a single space.)

When this final expect string is received, the dialing is complete. (There are many more
special sequences that can appear in the handshake string that we don’t cover.)

Let’s summarize the actions that we have to perform with these three files.

1. Using the name of the remote system, find the first entry in the Systems file
with the same name.

2. Find the matching entry in the Devices file with a type and class that match the
corresponding entries in the Systems file entry.

3. Find the entry in the Dialers file that matches the dialer field in the Devices
file.

4. Dial the modem.

There are two reasons why this can fail: (1) the device corresponding to the line field in
the Devices file is already in use by someone else or (2) the dialing is unsuccessful
(e.g., the phone on the remote system is busy, or the remote system is down and is not
answering the phone). The second case is often detected by a timeout occurring when
we’re reading from the modem, trying to match an expect string (see Exercise 10). In
either case, we want to go back to step 1 and search for the next entry for the same
remote system. As we saw in Figure 2, a  given host can have multiple entries, each with
a different phone number (and each phone number could correspond to a different
device).

There are other files in the Honey DanBer system that we don’t use in the example
in this chapter. The file Dialcodes specifies dialcode abbreviations for phone numbers
in the Systems file. The file Sysfiles allows the specification of alternate copies of
the three files Systems, Devices, and Dialers.

5 Ser ver Design

We’ll start with a description of the server. Two factors affect the design of the server:

1. Dialing can take a while (15–30 seconds), so the server has to fork a child
process to do the actual dialing.



Section 5 Server Design 7

2. The daemon server (the parent) has to be the one process that manages all the
locks.

Figure 5 shows the arrangement of the processes.

server
w/lock table

client

Systems,
Devices, and
Dialers files

server

parent child

fork

exit status

dialing
commands

modem

request file descriptor

or error

Figure 5 Arrangement of processes in modem dialer.

The steps performed by the server are the following:

1. The parent receives the request from the client at the server’s well-known name.
As we described in Sections 17.2.2 and 17.3.2, this creates a unique s-pipe
between the client and server. This parent process has to handle multiple clients
at the same time, like the open server in Section 17.6.

2. Based on the name of the remote system that the client wants to contact, the
parent goes through the Systems file and Devices file to find a match. The
parent also keeps a lock table of which devices are currently in use, so it can
skip those entries in the Devices file that are in use.

3. If a match is found, a child is forked to do the actual dialing. (The parent can
handle other clients at this point.) If successful, the child sends the file
descriptor for the modem back to the client on the client-specific s-pipe (which
got duplicated across the fork) and calls exit(0). If an error occurs (phone
line busy, no answer, etc.), the child calls exit(1).

4. The parent is notified of the child termination by SIGCHLD and fetches its
termination status (waitpid).

If the child was successful there is nothing more for the parent to do. The lock
must be held until the client is finished with the modem device. The
client-specific s-pipe between the client and parent is left open. This way, when
the client does terminate, the parent is notified, and the parent releases the lock.

If the child was not successful, the parent picks up in the Systems file where it
left off for this client and tries to find another match. If another entry is found
for the remote system, the parent goes back to step 3 and forks a new child to
do the actual dialing. If no more entries exist for the remote system, the parent
calls send_err (Figure 17.19) and closes the client-specific s-pipe.



8 A Modem Dialer The Lost Chapter

Having a unique connection to each client allows the child to send debug output back to
the client, if desired. Often the client wants to see the progress of the actual dialing, if
problems occur. Even though the dialing is being done by the child of an unrelated
server, the unique connection allows the child to send output directly back to its client.

6 Ser ver Source Code
We have 17 source files that constitute the server. Figure 6 lists the files containing the
various functions and specifies which are used by the parent and the child. Figure 7
provides an overview of how the various functions are called.

Source file Parent/Child Functions

childdial.c C child_dial
cliargs.c P cli_args
client.c P client_alloc, client_add, client_del, client_sigchld
ctlstr.c C ctl_str
debug.c C DEBUG, DEBUG_NONL
devfile.c P dev_next, dev_rew, dev_find
dialfile.c C dial_next, dial_rew, dial_find
expectstr.c C expect_str, exp_read, sig_alrm
lock.c P find_line, lock_set, lock_rel, is_locked
loop.c P loop, cli_done, child_done
main.c P main
request.c P request
sendstr.c C send_str
sigchld.c P sig_chld
sysfile.c P sys_next, sys_rew, sys_posn
ttydial.c C tty_dial
ttyopen.c C tty_open

Figure 6 Source files for server.

main

loop

request

sig_chld

fork
child_dial

dial_find

tty_open

tty_dial

send_fd, exit(0) or
writen, exit(1)

SIGCHLD

Figure 7 Overview of function calling in server.



Section 6 Server Source Code 9

Figure 8 shows the calld.h header, which is included by all the server source files.
It includes the standard system headers, defines some basic constants, and declares the
global variables.

#include "apue.h"
#include <errno.h>

#define CS_CALL "/home/sar/calld" /* well-known name */
#define CL_CALL "call"
#define MAXSYSNAME 256
#define MAXSPEEDSTR 256

/*
* Number of structures to alloc/realloc for Client structs
* (client.c) and Lock structs (lock.c).
*/
#define NALLOC 10

#define WHITE " \t\n" /* for separating tokens */
#define SYSTEMS "./Systems" /* my own copies for now */
#define DEVICES "./Devices"
#define DIALERS "./Dialers"

extern int clifd;
extern int Debug; /* nonzero for dialing debug output */
extern char errmsg[]; /* error message string to return to client */
extern char *speed; /* speed (actually "class") to use */
extern char *sysname; /* name of system to call */
extern uid_t uid; /* client’s uid */
extern volatile sig_atomic_t chld_flag; /* when SIGCHLD occurs */
extern enum parity { NONE, EVEN, ODD } parity; /* specified by client */

typedef struct { /* one Client struct per connected client */
int fd; /* fd, or -1 if available */
pid_t pid; /* child pid while dialing */
uid_t uid; /* client’s user ID */
int childdone; /* nonzero when SIGCHLD from dialing child recvd:

1 means exit(0), 2 means exit(1) */
long sysftell; /* next line to read in Systems file */
long foundone; /* true if we find a matching sysfile entry */
int Debug; /* option from client */
enum parity parity; /* option from client */
char speed[MAXSPEEDSTR]; /* option from client */
char sysname[MAXSYSNAME];/* option from client */

} Client;

/* both manipulated by client_XXX() functions */
extern Client *client; /* ptr to malloc’ed array of Client structs */
extern int client_size; /* # entries in client[] array */

typedef struct { /* everything for one entry in Systems file */
char *name; /* system name */
char *time; /* (e.g., "Any") time to call (ignored) */
char *type; /* (e.g., "ACU") or system name if direct connect */



10 A Modem Dialer The Lost Chapter

char *class; /* (e.g., "9600") speed */
char *phone; /* phone number or "-" if direct connect */
char *login; /* uucp login chat (ignored) */

} Systems;

typedef struct { /* everything for one entry in Devices file */
char *type; /* (e.g., "ACU") matched by type in Systems */
char *line; /* (e.g., "cua0") without preceding "/dev/" */
char *line2; /* (ignored) */
char *class; /* matched by class in Systems */
char *dialer; /* name of dialer in Dialers */

} Devices;

typedef struct { /* everything for one entry in Dialers file */
char *dialer; /* matched by dialer in Devices */
char *sub; /* phone number substitution string (ignored) */
char *expsend; /* expect/send chat */

} Dialers;

extern Systems systems; /* filled in by sys_next() */
extern Devices devices; /* filled in by dev_next() */
extern Dialers dialers; /* filled in by dial_next() */

void child_dial(Client *); /* childdial.c */
int cli_args(int, char **); /* cliargs.c */
int client_add(int, uid_t); /* client.c */
void client_del(int);
void client_sigchld(pid_t, int);
void loop(void); /* loop.c */
char *ctl_str(unsigned char); /* ctlstr.c */
int dev_find(Devices *, const Systems *); /* devfile.c */
int dev_next(Devices *);
void dev_rew(void);
int dial_find(Dialers *, const Devices *); /* dialfile.c */
int dial_next(Dialers *);
void dial_rew(void);
int expect_str(int, char *); /* expectstr.c */
int request(Client *); /* request.c */
int send_str(int, char *, char *, int); /* sendstr.c */
void sig_chld(int); /* sigchld.c */
long sys_next(Systems *); /* sysfile.c */
void sys_posn(long);
void sys_rew(void);
int tty_open(char *, char *, enum parity, int); /* ttyopen.c */
int tty_dial(int, char *, char *, char *, char *); /* ttydial.c */
pid_t is_locked(char *); /* lock.c */
void lock_set(char *, pid_t);
void lock_rel(pid_t);
void DEBUG(char *, ...); /* debug.c */
void DEBUG_NONL(char *, ...);

Figure 8 The calld.h header



Section 6 Server Source Code 11

We define a Client structure that contains all the information for each client. This is
an expansion of the similar structure in Figure 17.35. In the time between forking a
child to dial for a client and that child terminating, we can handle any number of other
clients. This structure contains all the information that we need to try to find another
Systems file entry for that client, and try dialing again.

We also define one structure for all the information for a single entry in the
Systems, Devices, and Dialers files.

Figure 9 shows the main function for the server. Since this program is normally run
as a daemon server, we provide a -d command line option that lets us run the program
interactively.

#include "calld.h"
#include <syslog.h>

int clifd, log_to_stderr, client_size;
int Debug; /* Debug controlled by client, not cmd line */
char errmsg[MAXLINE];
char *speed, *sysname;
uid_t uid;
Client *client = NULL;
Systems systems;
Devices devices;
Dialers dialers;
volatile sig_atomic_t chld_flag;
enum parity parity = NONE;

int
main(int argc, char *argv[])
{

int c;

log_open("calld", LOG_PID, LOG_USER);

opterr = 0; /* don’t want getopt() writing to stderr */
while ((c = getopt(argc, argv, "d")) != EOF) {

switch (c) {
case ’d’: /* debug */

log_to_stderr = 1;
break;

case ’?’:
log_quit("unrecognized option: -%c", optopt);

}
}

if (log_to_stderr == 0)
daemonize("calld");

loop(); /* never returns */
}

Figure 9 The main function



12 A Modem Dialer The Lost Chapter

When the -d option is set, all the calls to the log_XXX functions (Appendix B) are sent
to standard error. Otherwise they are logged using syslog.

The function loop is the main loop of the server (Figure 10). It multiplexes the
various descriptors with the select function.

#include "calld.h"
#include <errno.h>

static void cli_done(int);
static void child_done(int);

/*
* One bit per client cxn, plus one for listenfd;
* modified by loop() and cli_done()
*/
static fd_set allset;

void
loop(void)
{

int i, n, maxfd, maxi, listenfd, nread;
char buf[MAXLINE];
Client *cliptr;
uid_t uid;
fd_set rset;

if (signal_intr(SIGCHLD, sig_chld) == SIG_ERR)
log_sys("signal error");

/*
* Obtain descriptor to listen for client requests on.
*/

if ((listenfd = serv_listen(CS_CALL)) < 0)
log_sys("serv_listen error");

FD_ZERO(&allset);
FD_SET(listenfd, &allset);
maxfd = listenfd;
maxi = -1;

for ( ; ; ) {
if (chld_flag)

child_done(maxi);
rset = allset; /* rset gets modified each time around */
if ((n = select(maxfd + 1, &rset, NULL, NULL, NULL)) < 0) {

if (errno == EINTR) {
/*
* Caught SIGCHLD, find entry with childdone set.
*/
child_done(maxi);
continue; /* issue the select again */

} else {
log_sys("select error");



Section 6 Server Source Code 13

}
}

if (FD_ISSET(listenfd, &rset)) {
/*
* Accept new client request.
*/

if ((clifd = serv_accept(listenfd, &uid)) < 0)
log_sys("serv_accept error: %d", clifd);

i = client_add(clifd, uid);
FD_SET(clifd, &allset);
if (clifd > maxfd)

maxfd = clifd; /* max fd for select() */
if (i > maxi)

maxi = i; /* max index in client[] array */
log_msg("new connection: uid %d, fd %d", uid, clifd);
continue;

}

/*
* Go through client[] array.
* Read any client data that has arrived.
*/
for (cliptr = &client[0]; cliptr <= &client[maxi]; cliptr++) {

if ((clifd = cliptr->fd) < 0)
continue;

if (FD_ISSET(clifd, &rset)) {
/*
* Read argument buffer from client.
*/
if ((nread = read(clifd, buf, MAXLINE)) < 0) {

log_sys("read error on fd %d", clifd);
} else if (nread == 0) {

/*
* The client has terminated or closed
* the stream pipe. Now we can release
* its device lock.
*/
log_msg("closed: uid %d, fd %d",
cliptr->uid, clifd);

lock_rel(cliptr->pid);
cli_done(clifd);
continue;

}

/*
* Data has arrived from the client.
* Process the client’s request.
*/
if (buf[nread-1] != 0) {

log_quit("request from uid %d not null terminated:"
" %*.*s", uid, nread, nread, buf);



14 A Modem Dialer The Lost Chapter

cli_done(clifd);
continue;

}
log_msg("starting: %s, from uid %d", buf, uid);

/*
* Parse the arguments, set options. Since
* we may need to try calling again for this
* client, save options in client[] array.
*/
if (buf_args(buf, cli_args) < 0)

log_quit("command line error: %s", buf);
cliptr->Debug = Debug;
cliptr->parity = parity;
strcpy(cliptr->sysname, sysname);
strcpy(cliptr->speed, (speed == NULL) ? "" : speed);
cliptr->childdone = 0;
cliptr->sysftell = 0;
cliptr->foundone = 0;

if (request(cliptr) < 0) {
/*
* System not found, or unable to connect.
*/
if (send_err(cliptr->fd, -1, errmsg) < 0)

log_sys("send_err error");
cli_done(clifd);
continue;

}
/*
* At this point request() has forked a child that is
* trying to dial the remote system. We’ll find
* out the child’s status when it terminates.
*/

}
}

}
}

/*
* Go through the client[] array looking for clients whose dialing
* children have terminated. This function is called by loop() when
* chld_flag (the flag set by the SIGCHLD handler) is nonzero.
*/
static void
child_done(int maxi)
{

Client *cliptr;

again:
chld_flag = 0; /* to check when done with loop for more SIGCHLDs */
for (cliptr = &client[0]; cliptr <= &client[maxi]; cliptr++) {



Section 6 Server Source Code 15

if ((clifd = cliptr->fd) < 0)
continue;

if (cliptr->childdone) {
log_msg("child done: pid %d, status %d",

cliptr->pid, cliptr->childdone-1);

/*
* If the child was successful (exit(0)), just clear the
* flag. When the client terminates, we’ll read the EOF
* on the stream pipe above and release the device lock.
*/

if (cliptr->childdone == 1) { /* child did exit(0) */
cliptr->childdone = 0;
continue;

}

/*
* Unsuccessful: child did exit(1). Release the device
* lock and try again from where we left off.
*/

cliptr->childdone = 0;
lock_rel(cliptr->pid); /* unlock the device entry */
if (request(cliptr) < 0) {

/*
* Still unable, time to give up.
*/
if (send_err(cliptr->fd, -1, errmsg) < 0)

log_sys("send_err error");
cli_done(clifd);
continue;

}
/*
* request() has forked another child for this client.
*/

}
}
if (chld_flag) /* additional SIGCHLDs have been caught */

goto again; /* need to check all childdone flags again */
}

/*
* Clean up when we’re done with a client.
*/
static void
cli_done(int clifd)
{

client_del(clifd); /* delete entry in client[] array */
FD_CLR(clifd, &allset); /* turn off bit in select() set */
close(clifd); /* close our end of stream pipe */

}

Figure 10 The loop.c file



16 A Modem Dialer The Lost Chapter

The loop function initializes the client array and establishes a signal handler for
SIGCHLD. We call signal_intr instead of signal so that any slow system call is
interrupted when our signal handler returns. The loop function then calls
serv_listen (Figures 17.10 and 17.15). The rest of the function is an infinite loop
based on the select function, that tests for the following two conditions:

1. If a new client connection arrives, we call serv_accept (Figures 17.11
and 17.16). The function client_add creates an entry in the client array for
the new client.

2. We then go through the client array, to see if (a) any client has terminated, or
(b) any client requests have arrived.

When a client terminates (whether voluntarily or not) its client-specific s-pipe to
the server is closed, and we read an end of file from our end of the s-pipe. At
this point we can release any device locks that the client owned and release the
entry in the client array.

When a request arrives from a client, we set things up and call request. (We
showed the function buf_args in Figure 17.32.) If the name of the remote
system is valid and if an available device entry is located, request forks a
child process and returns.

The termination of a child is one external event that can happen at any time in this
function. If we’re blocked in the select function, it returns an error of EINTR in this
case. Since the signal can also happen at other points in the loop function, we test the
flag chld_flag each time through the loop before calling select. If the signal has
occurred, we call the function child_done to process the termination.

This function goes through the client array, examining the childdone flag for
each valid entry. If the child was successful, there’s nothing else to do at this point. But
if the child terminated with an exit status of 1, we call request to try to find another
Systems file entry for this client.

Figure 11 shows the function cli_args, which is called by buf_args in the loop
function when a client request arrives. It processes the command-line arguments from
the client.

#include "calld.h"

/*
* This function is called by buf_args(), which is called by loop().
* buf_args() has broken up the client’s buffer into an argv[] style
* array, which is now processed.
*/
int
cli_args(int argc, char **argv)
{

int c;

if (argc < 2 || strcmp(argv[0], CL_CALL) != 0) {
strcpy(errmsg, "usage: call <options> <hostname>");
return(-1);



Section 6 Server Source Code 17

}
Debug = 0; /* option defaults */
parity = NONE;
speed = NULL;
opterr = 0; /* don’t want getopt() writing to stderr */
optind = 1; /* since we call getopt() multiple times */
while ((c = getopt(argc, argv, "des:o")) != EOF) {

switch (c) {
case ’d’:

Debug = 1; /* client wants DEBUG() output */
break;

case ’e’: /* even parity */
parity = EVEN;
break;

case ’o’: /* odd parity */
parity = ODD;
break;

case ’s’: /* speed */
speed = optarg;
break;

case ’?’:
sprintf(errmsg, "unrecognized option: -%c\n", optopt);
return(-1);

}
}
if (optind >= argc) {

sprintf(errmsg, "missing <hostname> to call\n");
return(-1);

}
sysname = argv[optind]; /* name of host to call */
return(0);

}

Figure 11 The cli_args function

Note that this function sets global variables based on the command-line arguments,
which loop then copies into the appropriate entry in the client array, since these
options affect only a single client’s request.

Figure 12 shows the file client.c, which defines the functions that manipulate the
client array. The only difference between Figure 12 and Figure 17.36 is that we now
have to look up an entry based on the process ID (in the function client_sigchld).

#include "calld.h"

static void
client_alloc(void) /* alloc more entries in the client[] array */
{

int i;



18 A Modem Dialer The Lost Chapter

if (client == NULL)
client = malloc(NALLOC * sizeof(Client));

else
client = realloc(client,

(client_size + NALLOC) * sizeof(Client));
if (client == NULL)

err_sys("can’t alloc for client array");

/*
* Have to initialize the new entries.
*/

for (i = client_size; i < client_size + NALLOC; i++)
client[i].fd = -1; /* fd of -1 means entry available */

client_size += NALLOC;
}

/*
* Called by loop() when connection request from a new client arrives.
*/
int
client_add(int fd, uid_t uid)
{

int i;

if (client == NULL) /* first time we’re called */
client_alloc();

again:
for (i = 0; i < client_size; i++) {

if (client[i].fd == -1) { /* find an available entry */
client[i].fd = fd;
client[i].uid = uid;
return(i); /* return index in client[] array */

}
}

/*
* Client array full, time to realloc for more.
*/

client_alloc();
goto again; /* and search again (will work this time) */

}

/*
* Called by loop() when we’re done with a client.
*/
void
client_del(int fd)
{

int i;

for (i = 0; i < client_size; i++) {
if (client[i].fd == fd) {

client[i].fd = -1;



Section 6 Server Source Code 19

return;
}

}
log_quit("can’t find client entry for fd %d", fd);

}

/*
* Find the client entry corresponding to a process ID.
* This function is called by the sig_chld() signal
* handler only after a child has terminated.
*/
void
client_sigchld(pid_t pid, int stat)
{

int i;

for (i = 0; i < client_size; i++) {
if (client[i].pid == pid) {

client[i].childdone = stat; /* child’s exit() status +1 */
return;

}
}
log_quit("can’t find client entry for pid %d", pid);

}

Figure 12 The client.c file

Figure 13 shows the file lock.c. The functions in this file manage the lock array
for the parent. As with the client functions, we call realloc to allocate space
dynamically for the lock array to avoid compile-time limits.

#include "calld.h"

typedef struct {
char *line; /* points to malloc()ed area */

/* we lock by line (device name) */
pid_t pid; /* but unlock by process ID */

/* pid of 0 means available */
} Lock;
static Lock *lock = NULL; /* the malloc’ed/realloc’ed array */
static int lock_size; /* #entries in lock[] */
static int nlocks; /* #entries currently used in lock[] */

/*
* Find the entry in lock[] for the specified device (line).
* If we don’t find it, create a new entry at the end of the
* lock[] array for the new device. This is how all the possible
* devices get added to the lock[] array over time.
*/
static Lock *
find_line(char *line)
{



20 A Modem Dialer The Lost Chapter

int i;
Lock *lptr;

for (i = 0; i < nlocks; i++) {
if (strcmp(line, lock[i].line) == 0)

return(&lock[i]); /* found entry for device */
}

/*
* Entry not found. This device has never been locked before.
* Add a new entry to lock[] array.
*/

if (nlocks >= lock_size) { /* lock[] array is full */
if (lock == NULL) /* first time through */

lock = malloc(NALLOC * sizeof(Lock));
else

lock = realloc(lock, (lock_size + NALLOC) * sizeof(Lock));
if (lock == NULL)

err_sys("can’t alloc for lock array");
lock_size += NALLOC;

}

lptr = &lock[nlocks++];
if ((lptr->line = malloc(strlen(line) + 1)) == NULL)

log_sys("malloc error");
strcpy(lptr->line, line); /* copy caller’s line name */
lptr->pid = 0;
return(lptr);

}

void
lock_set(char *line, pid_t pid)
{

Lock *lptr;

log_msg("locking %s for pid %d", line, pid);
lptr = find_line(line);
lptr->pid = pid;

}

void
lock_rel(pid_t pid)
{

Lock *lptr;

for (lptr = &lock[0]; lptr < &lock[nlocks]; lptr++) {
if (lptr->pid == pid) {

log_msg("unlocking %s for pid %d", lptr->line, pid);
lptr->pid = 0;
return;

}
}
log_msg("can’t find lock for pid = %d", pid);



Section 6 Server Source Code 21

}

pid_t
is_locked(char *line)
{

return(find_line(line)->pid); /* nonzero pid means locked */
}

Figure 13 Functions for managing client device locks

Each entry in the lock array is associated with a single line (the second field in the
Devices file). Since these locking functions don’t know all the different line values in
this data file, new entries in the lock array are created whenever a new line is locked
the first time. The function find_line handles this.

The next three source files handle the three data files: Systems, Devices, and
Dialers. Each file has a XXX_next function that reads the next line of the file and
breaks it up into fields. The ISO C function strtok is called to break the lines into
fields. The functions in Figure 14 handle the Systems file.

#include "calld.h"

static FILE *fpsys = NULL;
static int syslineno; /* for error messages */
static char sysline[MAXLINE];

/* can’t be automatic; sys_next() returns pointers into here */

/*
* Read and break apart a line in the Systems file.
*/
long /* return >0 if OK, -1 on EOF */
sys_next(Systems *sysptr) /* structure is filled in with pointers */
{

if (fpsys == NULL) {
if ((fpsys = fopen(SYSTEMS, "r")) == NULL)

log_sys("can’t open %s", SYSTEMS);
syslineno = 0;

}

again:
if (fgets(sysline, MAXLINE, fpsys) == NULL)

return(-1); /* EOF */
syslineno++;
if ((sysptr->name = strtok(sysline, WHITE)) == NULL) {

if (sysline[0] == ’\n’)
goto again; /* ignore empty line */

log_quit("missing ‘name’ in Systems file, line %d", syslineno);
}
if (sysptr->name[0] == ’#’)

goto again; /* ignore comment line */
if ((sysptr->time = strtok(NULL, WHITE)) == NULL)

log_quit("missing ‘time’ in Systems file, line %d", syslineno);



22 A Modem Dialer The Lost Chapter

if ((sysptr->type = strtok(NULL, WHITE)) == NULL)
log_quit("missing ‘type’ in Systems file, line %d", syslineno);

if ((sysptr->class = strtok(NULL, WHITE)) == NULL)
log_quit("missing ‘class’ in Systems file, line %d", syslineno);

if ((sysptr->phone = strtok(NULL, WHITE)) == NULL)
log_quit("missing ‘phone’ in Systems file, line %d", syslineno);

if ((sysptr->login = strtok(NULL, "\n")) == NULL)
log_quit("missing ‘login’ in Systems file, line %d", syslineno);

return(ftell(fpsys)); /* return the position in Systems file */
}

void
sys_rew(void)
{

if (fpsys != NULL)
rewind(fpsys);

syslineno = 0;
}

void
sys_posn(long posn) /* position Systems file */
{

if (posn == 0)
sys_rew();

else if (fseek(fpsys, posn, SEEK_SET) != 0)
log_sys("fseek error");

}

Figure 14 Functions to read Systems file

The function sys_next is called by request to read the next entry in the file.
We have to remember our position in this file for each client (the sysftell

member of the Client structure). This is so that if a child fails to dial the remote
system, we can pick up where we left off in the Systems file (for that client), to try to
find another entry for the remote system. The position is obtained by calling the
standard I/O function ftell and reset using fseek.

Figure 15 contains the functions for reading the Devices file.

#include "calld.h"

static FILE *fpdev = NULL;
static int devlineno; /* for error messages */
static char devline[MAXLINE];

/* can’t be automatic; dev_next() returns pointers into here */

/*
* Read and break apart a line in the Devices file.
*/
int
dev_next(Devices *devptr) /* pointers in structure are filled in */
{



Section 6 Server Source Code 23

if (fpdev == NULL) {
if ((fpdev = fopen(DEVICES, "r")) == NULL)

log_sys("can’t open %s", DEVICES);
devlineno = 0;

}

again:
if (fgets(devline, MAXLINE, fpdev) == NULL)

return(-1); /* EOF */
devlineno++;
if ((devptr->type = strtok(devline, WHITE)) == NULL) {

if (devline[0] == ’\n’)
goto again; /* ignore empty line */

log_quit("missing ‘type’ in Devices file, line %d",
devlineno);

}
if (devptr->type[0] == ’#’)

goto again; /* ignore comment line */
if ((devptr->line = strtok(NULL, WHITE)) == NULL)

log_quit("missing ‘line’ in Devices file, line %d",
devlineno);

if ((devptr->line2 = strtok(NULL, WHITE)) == NULL)
log_quit("missing ‘line2’ in Devices file, line %d",

devlineno);
if ((devptr->class = strtok(NULL, WHITE)) == NULL)

log_quit("missing ‘class’ in Devices file, line %d",
devlineno);

if ((devptr->dialer = strtok(NULL, WHITE)) == NULL)
log_quit("missing ‘dialer’ in Devices file, line %d",

devlineno);

return(0);
}

void
dev_rew(void)
{

if (fpdev != NULL)
rewind(fpdev);

devlineno = 0;
}

/*
* Find a match of type and class.
*/
int
dev_find(Devices *devptr, const Systems *sysptr)
{

dev_rew();
while (dev_next(devptr) >= 0) {

if (strcmp(sysptr->type, devptr->type) == 0 &&
strcmp(sysptr->class, devptr->class) == 0)



24 A Modem Dialer The Lost Chapter

return(0); /* found a device match */
}
sprintf(errmsg, "device ‘%s’/‘%s’ not found\n", sysptr->type,

sysptr->class);
return(-1);

}

Figure 15 Functions for reading Devices file

We’ll see that the request function calls dev_find to locate an entry with type and
class fields that match an entry in the Systems file.

Figure 16 contains the functions for reading the Dialers file.

#include "calld.h"

static FILE *fpdial = NULL;
static int diallineno; /* for error messages */
static char dialline[MAXLINE];

/* can’t be automatic; dial_next() returns pointers into here */

/*
* Read and break apart a line in the Dialers file.
*/
int
dial_next(Dialers *dialptr) /* pointers in structure are filled in */
{

if (fpdial == NULL) {
if ((fpdial = fopen(DIALERS, "r")) == NULL)

log_sys("can’t open %s", DIALERS);
diallineno = 0;

}

again:
if (fgets(dialline, MAXLINE, fpdial) == NULL)

return(-1); /* EOF */
diallineno++;
if ((dialptr->dialer = strtok(dialline, WHITE)) == NULL) {

if (dialline[0] == ’\n’)
goto again; /* ignore empty line */

log_quit("missing ‘dialer’ in Dialers file, line %d",
diallineno);

}
if (dialptr->dialer[0] == ’#’)

goto again; /* ignore comment line */
if ((dialptr->sub = strtok(NULL, WHITE)) == NULL)

log_quit("missing ‘sub’ in Dialers file, line %d",
diallineno);

if ((dialptr->expsend = strtok(NULL, "\n")) == NULL)
log_quit("missing ‘expsend’ in Dialers file, line %d",

diallineno);

return(0);



Section 6 Server Source Code 25

}

void
dial_rew(void)
{

if (fpdial != NULL)
rewind(fpdial);

diallineno = 0;
}

/*
* Find a dialer match.
*/
int
dial_find(Dialers *dialptr, const Devices *devptr)
{

dial_rew();
while (dial_next(dialptr) >= 0) {

if (strcmp(dialptr->dialer, devptr->dialer) == 0)
return(0); /* found a dialer match */

}
sprintf(errmsg, "dialer ‘%s’ not found\n", dialptr->dialer);
return(-1);

}

Figure 16 Functions for reading Dialers file

We’ll see that the child_dial function calls dial_find to find an entry with a dialer
field that matches a particular device.

Note from Figure 6 that the Systems and Devices files are handled by the parent,
while the Dialers file is handled by the child. This was one of the design goals—the
parent finds a matching device that is not locked and forks a child to do the actual
dialing.

We look at the request function in Figure 17. It was called by the loop function to
try to locate an unlocked device for the specified remote host. To do this it goes through
the Systems file, then the Devices file. If a match is found, a child is forked. We
allow the client to specify a speed, in addition to the name of the remote system. For
example, with the Systems file in Figure 2, the client’s request can look like

call -s 9600 host1

which causes us to ignore the other two entries for host1 in Figure 2.
Note that we can’t record the device lock using lock_set until we know the

process ID of the child (i.e., after the fork), but we have to test whether the device is
locked before the fork. Since we don’t want the child starting until we have set the
lock, we use the TELL_WAIT functions (Figure 10.24) to synchronize the parent and
child. Also note that although the test is_locked and the actual setting of the lock by
set_lock are two separate operations (i.e., not a single atomic operation), we do not
have a race condition. This is because request is called only by the single parent
server daemon—it is not called by multiple processes.



26 A Modem Dialer The Lost Chapter

If request returns 0, a child was forked to start the dial; otherwise it returns −1 to
indicate that either the name of the remote system wasn’t valid or all the possible
devices for the remote system were locked.

#include "calld.h"

int /* return 0 if OK, -1 on error */
request(Client *cliptr)
{

pid_t pid;

/*
* Position where this client left off last (or rewind).
*/

errmsg[0] = 0;
sys_posn(cliptr->sysftell);
while ((cliptr->sysftell = sys_next(&systems)) >= 0) {

if (strcmp(cliptr->sysname, systems.name) == 0) {
/*
* System match;
* if client specified a speed, it must match too.
*/

if (cliptr->speed[0] != 0 &&
strcmp(cliptr->speed, systems.class) != 0)

continue; /* speeds don’t match */

DEBUG("trying sys: %s, %s, %s, %s", systems.name,
systems.type, systems.class, systems.phone);

cliptr->foundone++;
if (dev_find(&devices, &systems) < 0)

break;

DEBUG("trying dev: %s, %s, %s, %s", devices.type,
devices.line, devices.class, devices.dialer);

if ((pid = is_locked(devices.line)) != 0) {
sprintf(errmsg, "device ‘%s’ already locked by pid %d\n",

devices.line, pid);
continue; /* look for another entry in Systems file */

}

/*
* We’ve found a device that’s not locked.
* fork() a child to to the actual dialing.
*/

TELL_WAIT();
if ((cliptr->pid = fork()) < 0) {

log_sys("fork error");
} else if (cliptr->pid == 0) { /* child */

WAIT_PARENT(); /* let parent set lock */
child_dial(cliptr); /* never returns */

}

/* parent */



Section 6 Server Source Code 27

lock_set(devices.line, cliptr->pid);

/*
* Let child resume, now that lock is set.
*/

TELL_CHILD(cliptr->pid);
return(0); /* we’ve started a child */

}
}

/*
* Reached EOF on Systems file.
*/

if (cliptr->foundone == 0)
sprintf(errmsg, "system ‘%s’ not found\n", cliptr->sysname);

else if (errmsg[0] == 0)
sprintf(errmsg, "unable to connect to system ‘%s’\n",

cliptr->sysname);
return(-1); /* also, cliptr->sysftell is -1 */

}

Figure 17 The request function

The last of the parent-specific functions is sig_chld, the signal handler for the
SIGCHLD signal. This is shown in Figure 18.

#include "calld.h"
#include <sys/wait.h>

/*
* SIGCHLD handler, invoked when a child terminates.
* Probably interrupts accept() in serv_accept().
*/
void
sig_chld(int signo)
{

int stat, errno_save;
pid_t pid;

errno_save = errno; /* log_msg() might change errno */
chld_flag = 1;
if ((pid = waitpid(-1, &stat, 0)) <= 0)

log_sys("waitpid error");

if (WIFEXITED(stat) != 0) /* set client childdone status for loop */
client_sigchld(pid, WEXITSTATUS(stat)+1);

else
log_msg("child %d terminated abnormally: %04x", pid, stat);

errno = errno_save;
}

Figure 18 The sig_chld signal handler



28 A Modem Dialer The Lost Chapter

When a child terminates we must record its termination status and process ID in the
appropriate entry in the client array. We call the function client_sigchld
(Figure 12) to do this.

Note that we are violating one of our earlier rules from Chapter 10—a signal
handler should only set a global variable and nothing else. Here we call waitpid and
the function client_sigchld (Figure 12). This latter function is signal safe. All it
does is record information in an entry in the client array — it doesn’t create or delete
entries (which would be nonreentrant) and it doesn’t call any system functions.

waitpid is defined by POSIX.1 to be signal safe (Figure 10.4). If we didn’t call
waitpid from the signal handler, the parent would have to call it when the flag
chld_flag was nonzero. But since numerous children can terminate before the main
loop gets a chance to look at chld_flag, we would either need to increment
chld_flag each time a child terminated (so the main loop would know how many
times to call waitpid) or call waitpid in a loop, with the WNOHANG flag (Figure 8.7).
The simplest solution is to call waitpid from the signal handler, and record the
information in the client array.

We now proceed to the functions that are called by the child as part of its attempt to
dial the remote system. Everything starts for the child after the fork when request
calls child_dial (Figure 19).

#include "calld.h"

/*
* The child does the actual dialing and sends the fd back to
* the client. This function can’t return to caller; it must exit.
* If successful, exit(0), else exit(1).
* The child uses the following global variables, which are just
* in the copy of the data space from the parent:
* cliptr->fd (to send DEBUG() output and fd back to client),
* cliptr->Debug (for all DEBUG() output), cliptr->parity,
* systems, devices, dialers.
*/
void
child_dial(Client *cliptr)
{

int fd, n;

Debug = cliptr->Debug;
DEBUG("child, pid %d", getpid());

if (strcmp(devices.dialer, "direct") == 0) { /* direct tty line */
fd = tty_open(systems.class, devices.line, cliptr->parity, 0);
if (fd < 0)

goto die;
} else { /* else assume dialing is needed */

if (dial_find(&dialers, &devices) < 0)
goto die;

fd = tty_open(systems.class, devices.line, cliptr->parity, 1);
if (fd < 0)

goto die;



Section 6 Server Source Code 29

if (tty_dial(fd, systems.phone, dialers.dialer,
dialers.sub, dialers.expsend) < 0)
goto die;

}
DEBUG("done");

/*
* Send the open descriptor to client.
*/

if (send_fd(cliptr->fd, fd) < 0)
log_sys("send_fd error");

exit(0); /* parent will see this */

die:
/*
* The child can’t call send_err() as that would send the final
* 2-byte protocol to the client. We just send our error message
* back to the client. If the parent finally gives up, it’ll
* call send_err().
*/

n = strlen(errmsg);
if (writen(cliptr->fd, errmsg, n) != n) /* send error to client */

log_sys("writen error");
exit(1); /* parent will see this, release lock, and try again */

}

Figure 19 The child_dial function

If the device being used is directly connected, just the function tty_open is called to
open the terminal device and set all the appropriate terminal parameters. But if the
device is a modem, three functions are called: dial_find (to locate the appropriate
entry in the Dialers file), tty_open, and tty_dial (to do the actual dialing).

If child_dial is successful, it returns the file descriptor to the client by calling
send_fd (Figures 17.20 and 17.22) and calls exit(0). Otherwise it sends an error
message back to the client across the s-pipe and calls exit(1). The client-specific
s-pipe is duplicated across the fork, so the child can send either the descriptor or error
message directly back to the client.

#include "calld.h"
#include <stdarg.h>

/*
* Note that all debug output goes back to the client.
*/
void
DEBUG(char *fmt, ...) /* debug output, newline at end */
{

va_list args;
char line[MAXLINE];
int n;



30 A Modem Dialer The Lost Chapter

if (Debug == 0)
return;

va_start(args, fmt);
vsprintf(line, fmt, args);
strcat(line, "\n");
va_end(args);
n = strlen(line);
if (writen(clifd, line, n) != n)

log_sys("writen error");
}

void
DEBUG_NONL(char *fmt, ...) /* debug output, NO newline at end */
{

va_list args;
char line[MAXLINE];
int n;

if (Debug == 0)
return;

va_start(args, fmt);
vsprintf(line, fmt, args);
va_end(args);
n = strlen(line);
if (writen(clifd, line, n) != n)

log_sys("writen error");
}

Figure 20 Debugging functions

The client can send a -d option in its command to the server, and this sets the
client-specific variable Debug. This flag is used in Figure 20 by the two functions
DEBUG and DEBUG_NONL to send debugging information back to the client. This
information is useful when dialing problems are encountered for a particular system.
These two functions are called predominantly by the child, although the parent also
calls them from the request function (Figure 17).

Figure 21 shows the tty_open function. It is called for both modem devices and
direct connect devices to open the terminal and set its modes. The class field of the
Systems and Devices file specified the line speed, and the client can specify the
parity.

#include "calld.h"
#include <fcntl.h>

/*
* Open the terminal line.
*/
int
tty_open(char *class, char *line, enum parity parity, int modem)
{

int fd, baud;



Section 6 Server Source Code 31

char devname[100];
struct termios term;

/*
* First open the device.
*/

strcpy(devname, "/dev/");
strcat(devname, line);
if ((fd = open(devname, O_RDWR | O_NONBLOCK)) < 0) {

sprintf(errmsg, "can’t open %s: %s\n",
devname, strerror(errno));

return(-1);
}
if (isatty(fd) == 0) {

sprintf(errmsg, "%s is not a tty\n", devname);
return(-1);

}

/*
* Fetch then set modem’s terminal status.
*/

if (tcgetattr(fd, &term) < 0)
log_sys("tcgetattr error");

if (parity == NONE)
term.c_cflag = CS8;

else if (parity == EVEN)
term.c_cflag = CS7 | PARENB;

else if (parity == ODD)
term.c_cflag = CS7 | PARENB | PARODD;

else
log_quit("unknown parity");

term.c_cflag |= CREAD | /* enable receiver */
HUPCL; /* lower modem lines on last close */

/* 1 stop bit (since CSTOPB off) */
if (modem == 0)

term.c_cflag |= CLOCAL; /* ignore modem status lines */

term.c_oflag = 0; /* turn off all output processing */
term.c_iflag = IXON | IXOFF | /* Xon/Xoff flow control (default) */

IGNBRK | /* ignore breaks */
ISTRIP | /* strip input to 7 bits */
IGNPAR; /* ignore input parity errors */

term.c_lflag = 0; /* everything off in local flag:
disables canonical mode, disables
signal generation, disables echo */

term.c_cc[VMIN] = 1; /* 1 byte at a time, no timer */
term.c_cc[VTIME] = 0;

if (strcmp(class, "38400") == 0) {
baud = B38400;

} else if (strcmp(class, "19200") == 0) {
baud = B19200;



32 A Modem Dialer The Lost Chapter

} else if (strcmp(class, "9600") == 0) {
baud = B9600;

} else if (strcmp(class, "4800") == 0) {
baud = B4800;

} else if (strcmp(class, "2400") == 0) {
baud = B2400;

} else if (strcmp(class, "1800") == 0) {
baud = B1800;

} else if (strcmp(class, "1200") == 0) {
baud = B1200;

} else if (strcmp(class, "600") == 0) {
baud = B600;

} else if (strcmp(class, "300") == 0) {
baud = B300;

} else if (strcmp(class, "200") == 0) {
baud = B200;

} else if (strcmp(class, "150") == 0) {
baud = B150;

} else if (strcmp(class, "134") == 0) {
baud = B134;

} else if (strcmp(class, "110") == 0) {
baud = B110;

} else if (strcmp(class, "75") == 0) {
baud = B75;

} else if (strcmp(class, "50") == 0) {
baud = B50;

} else {
sprintf(errmsg, "invalid baud rate: %s\n", class);
return(-1);

}
cfsetispeed(&term, baud);
cfsetospeed(&term, baud);

if (tcsetattr(fd, TCSANOW, &term) < 0) /* set attributes */
log_sys("tcsetattr error");

DEBUG("tty open");
clr_fl(fd, O_NONBLOCK); /* turn off nonblocking */
return(fd);

}

Figure 21 The tty_open function

We open the terminal device with the nonblocking flag, as sometimes the open of a
terminal connected to a modem doesn’t return until the modem’s carrier is present.
Since we are dialing out and not dialing in, we don’t want to wait. At the end of the
function we call the clr_fl function to clear the nonblocking mode. The only
difference between a modem and a direct connect line in the tty_open function is that
we set the CLOCAL bit for a direct connect line.

The details of dialing a modem takes place in the tty_dial function (Figure 22).
This function is only called for modem lines, not for direct connect lines.



Section 6 Server Source Code 33

#include "calld.h"

int
tty_dial(int fd, char *phone, char *dialer, char *sub, char *expsend)
{

char *ptr;

ptr = strtok(expsend, WHITE); /* first expect string */
for ( ; ; ) {

DEBUG_NONL("expect = %s\nread: ", ptr);
if (expect_str(fd, ptr) < 0)

return(-1);

if ((ptr = strtok(NULL, WHITE)) == NULL)
return(0); /* at the end of the expect/send */

DEBUG_NONL("send = %s\nwrite: ", ptr);
if (send_str(fd, ptr, phone, 0) < 0)

return(-1);

if ((ptr = strtok(NULL, WHITE)) == NULL)
return(0); /* at the end of the expect/send */

}
}

Figure 22 The tty_dial function

The tty_dial function just calls one function to handle the expect string and another
to handle the send string. We are done when there are no more send or expect strings.
(Note that we do not handle the sub string from Figure 4.)

Figure 23 shows the function send_str that outputs the send strings. To keep the
size of this example manageable, we have not implemented every special escape
sequence — we have implemented enough to use the program with the Dialers file
shown in Figure 4.

#include "calld.h"

int
send_str(int fd, char *ptr, char *phone, int echocheck)
{

char c, tempc;

/*
* Go though send string, converting escape sequences on the fly.
*/

while ((c = *ptr++) != 0) {
if (c == ’\\’) {

if (*ptr == 0) {
sprintf(errmsg, "backslash at end of send string\n");
return(-1);

}
c = *ptr++; /* char following backslash */



34 A Modem Dialer The Lost Chapter

switch (c) {
case ’c’: /* no CR, if at end of string */

if (*ptr == 0)
goto returnok;

continue; /* ignore if not at end of string */

case ’d’: /* 2 second delay */
DEBUG_NONL("<delay>");
sleep(2);
continue;

case ’p’: /* 0.25 second pause */
DEBUG_NONL("<pause>");
sleep_us(250000); /* Exercise 14.6 */
continue;

case ’e’:
DEBUG_NONL("<echo check off>");
echocheck = 0;
continue;

case ’E’:
DEBUG_NONL("<echo check on>");
echocheck = 1;
continue;

case ’T’: /* output phone number */
send_str(fd, phone, phone, echocheck); /* recursive */
continue;

case ’r’:
c = ’\r’;
break;

case ’s’:
c = ’ ’;
break;
/* room for lots more case statements ... */

default:
sprintf(errmsg, "unknown send escape char: \\%s\n",

ctl_str(c));
return(-1);

}
}

DEBUG_NONL("%s", ctl_str(c));
if (write(fd, &c, 1) != 1)

log_sys("write error");
if (echocheck) { /* wait for char to be echoed */

do {
if (read(fd, &tempc, 1) != 1)



Section 6 Server Source Code 35

log_sys("read error");
DEBUG_NONL("{%s}", ctl_str(tempc));

} while (tempc != c);
}

}
c = ’\r’; /* if no \c at end of string, CR written at end */
DEBUG_NONL("%s", ctl_str(c));
if (write(fd, &c, 1) != 1)

log_sys("write error");

returnok:
DEBUG("");
return(0);

}

Figure 23 The send_str function

send_str calls the function ctl_str to convert ASCII control characters into a
printable version. Figure 24 shows the ctl_str function.

#include "calld.h"

/*
* Make a printable string of the character "c", which may be a
* control character. Works only with ASCII.
*/
char *
ctl_str(unsigned char c)
{

static char tempstr[6]; /* biggest is "\177" + null */

c &= 255;
if (c == 0)

return("\\0"); /* really shouldn’t see a null */
else if (c < 040)

sprintf(tempstr, "ˆ%c", c + ’A’ - 1);
else if (c == 0177)

return("DEL");
else if (c > 0177)

sprintf(tempstr, "\\%03o", c);
else

sprintf(tempstr, "%c", c);
return(tempstr);

}

Figure 24 The ctl_str function

The hardest part of dialing the modem is recognizing the expect strings. Figure 25
shows the function expect_str that does this. (As with the send strings, we have
implemented only a subset of all the possible features provided by the Dialers file.)



36 A Modem Dialer The Lost Chapter

#include "calld.h"

#define EXPALRM 45 /* alarm time to read expect string */

static int expalarm = EXPALRM;
static volatile sig_atomic_t caught_alrm;

size_t /* read one byte, handle timeout errors & DEBUG */
exp_read(int fd, char *buf)
{

if (caught_alrm) { /* test flag before blocking in read */
DEBUG("\nread timeout");
return(-1);

}
if (read(fd, buf, 1) == 1) {

DEBUG_NONL("%s", ctl_str(*buf));
return(1);

}
if (errno == EINTR && caught_alrm)

DEBUG("\nread timeout");
else

log_sys("read error");
return(-1);

}

static void
sig_alrm(int signo)
{

caught_alrm = 1;
}

int /* return 0 if got it, -1 if not */
expect_str(int fd, char *ptr)
{

char expstr[MAXLINE], inbuf[MAXLINE];
char c;
char *src, *dst, *inptr, *cmpptr;
int i, matchlen;

if (strcmp(ptr, "\"\"") == 0)
goto returnok; /* special case of "" (expect nothing) */

/*
* Copy expect string, converting escape sequences.
*/

for (src = ptr, dst = expstr; (c = *src++) != 0; ) {
if (c == ’\\’) {

if (*src == 0) {
sprintf(errmsg, "invalid expect string: %s\n", ptr);
return(-1);

}
c = *src++; /* char following backslash */



Section 6 Server Source Code 37

switch (c) {
case ’r’:

c = ’\r’;
break;

case ’s’:
c = ’ ’;
break;
/* room for lots more case statements ... */

default:
sprintf(errmsg, "unknown expect escape char: \\%s\n",

ctl_str(c));
return(-1);

}
}
*dst++ = c;

}
*dst = 0;
matchlen = strlen(expstr);
if (signal(SIGALRM, sig_alrm) == SIG_ERR)

log_quit("signal error");
caught_alrm = 0;

alarm(expalarm);
do {

if (exp_read(fd, &c) < 0)
return(-1);

} while (c != expstr[0]); /* skip until first chars equal */
cmpptr = inptr = inbuf;
*inptr = c;
for (i = 1; i < matchlen; i++) { /* read matchlen chars */

inptr++;
if (exp_read(fd, inptr) < 0)

return(-1);
}
for ( ; ; ) { /* keep reading until we have a match */

if (strncmp(cmpptr, expstr, matchlen) == 0)
break; /* have a match */

inptr++;
if (exp_read(fd, inptr) < 0)

return(-1);
cmpptr++;

}

returnok:
alarm(0);
DEBUG("\nexpect: got it");
return(0);

}

Figure 25 Functions to read and recognize expect strings



38 A Modem Dialer The Lost Chapter

We first copy the expect string, converting the special characters. Our matching
technique is to read characters from the modem until the character matches the first
character of the expect string. We then read enough characters to equal the number of
characters in the expect string. From that point we continually read characters from the
modem into the buffer, comparing them against the expect string, until we have a match
or until the alarm goes off. (There are better algorithms for string matching—ours was
chosen to simplify the coding. The number of characters returned by the modem that
are compared to the expect string is usually on the order of 50, and the size of the expect
string is often around 10–20 characters.)

Note that we have to set an alarm each time we try to match an expect string, as the
alarm is the only way we can determine that we didn’t receive what we were waiting
for.

This completes the server daemon. All it does is open a terminal device and dial a
modem. What happens with the terminal device after it is opened depends on the
client. We’ll now examine a client that provides an interface similar to cu and tip,
allowing us to dial a remote system and log in.

7 Client Design
The interface between the client and server is only about a dozen lines of code. The
client formats a command line, sends it to the server, and receives back either a file
descriptor or an error indication. The rest of the client design depends on what the
client wants to do with the returned descriptor. In this section we’ll outline the design
of the call client that works like the familiar cu and tip programs. It allows us to call
a remote system and log in to it. The remote system need not be a UNIX system—we
can use it to communicate with any system or device that’s connected to the host with
an RS-232 serial connection.

Terminal Line Disciplines

In Figures 14.20 and 14.21 we gave an overview of the telnet program, which has a
similar structure to the modem dialer. Figure 26 is an expansion of Figure 14.20,
recognizing that there are two line disciplines between the user and the modem and
assuming that we’re using the program to dial into a remote UNIX host. (Recall from
the output of Figure 14.18 that for a STREAMS-based terminal system, Figure 26 is a
simplification. There may be multiple STREAMS modules making up the line
discipline and multiple modules making up the terminal device driver. We also don’t
explicitly show the stream head.)

The two dotted boxes in Figure 26 above the modem on the local system were
established by the server’s tty_open function (Figure 21). That function set the dotted
terminal line discipline module to noncanonical (i.e., raw) mode. The modem on the
local system was dialed by the server’s tty_dial function (Figure 22). The two arrows
between the dotted terminal line discipline box and the call process correspond to the
descriptor returned by the server. (We show the single descriptor as two arrows, to
reiterate the fact that it’s a full-duplex descriptor.)



Section 7 Client Design 39

terminal
device driver

terminal
device driver

terminal
device driver

terminal
line discipline
(noncanonical)

terminal
line discipline
(noncanonical)

terminal
line discipline

(canonical)

local system

kernel

remote system

kernel

call process shell

user at a
terminal

stdout, stderr stdin

st
do

ut
st

de
rr

st
di

n

modem modem

Figure 26 Overview of modem dialer process to log in to remote UNIX host.

The line discipline box beneath the shell on the remote system is set by the login
process on that system to be in the canonical mode. After we have dialed the remote
system we want the special terminal input characters (end of file, erase line, etc. from
Section 18.3) recognized by the line discipline module on the remote host. That means
we have to set the mode of the line discipline module above the terminal (standard
input, standard output, and standard error of the call process) to noncanonical mode.

One Process or Two?

In Figure 26 we show the call process as a single process. Doing so requires support
for an I/O multiplexing function such as select or poll, since two descriptors are
being read from and two descriptors are being written to. We could also design the
client as two processes, a parent and a child, as we showed in Figure 14.21. Figure 27
shows only these two processes and the line disciplines beneath them. Historically, cu
and tip have always been two processes, as in Figure 27. This is because early UNIX
systems didn’t support an I/O multiplexing function.

We choose to use a single process for the following two reasons.

1. Having two processes complicates the termination of the client. If we terminate
the connection by entering ˜. (a tilde followed by a period) at the beginning of
a line, the child recognizes this and terminates. The parent then has to catch the
SIGCHLD signal so that the parent can terminate too.

If the connection is terminated by the remote system or if the line is dropped,
the parent will detect this by reading an end of file from the modem descriptor.
The parent then has to notify the child, so that the child can also terminate.



40 A Modem Dialer The Lost Chapter

terminal
line discipline
(noncanonical)

terminal
line discipline
(noncanonical)

call
parent

call
child

st
do

u
t

st
de

rr

std
in

Figure 27 The call client as two processes.

Using a single process obviates the need for one process notifying the other
when it terminates.

2. We are going to implement a file transfer function in the client, similar to the
put and take commands of cu and tip. We enter these commands on the
standard input, on a line that begins with a tilde (the default escape character).
These commands are recognized by the child if two processes are being used
(Figure 27). But the file that’s received by the client, in the case of a take
command, comes across the modem descriptor, which is being read by the
parent. This means that to implement the take command, the child has to
notify the parent so that the parent stops reading from the modem. The parent
is probably blocked in a read on this descriptor, so a signal is required to
interrupt the parent’s read. When the child is done, another notification is
required to tell the parent to resume reading from the modem. While possible,
this scenario quickly becomes messy.

A single process simplifies the entire client. By using a single process, however, we lose
the ability to job-control stop only the child. The BSD tip program supports this
feature. It allows us to stop the child while the parent continues running. This means
all the terminal input is directed back to our shell instead of the child, letting us work
on the local system, but we’ll still see any output generated by the remote system. This
is handy if we start a long running job on the remote system and want to see any output
that it generates, while working on the local system.

We now look at the source code to implement the client.

8 Client Source Code

The client is smaller than the server, since the client doesn’t handle all the details of
connecting the remote system—the server from Section 6 handles this. About one half
of the client is needed to handle commands such as take and put.

Figure 28 shows the call.h header that is included by all the client source files.



Section 8 Client Source Code 41

#include "apue.h"
#include <errno.h>
#include <sys/time.h>

#define CS_CALL "/home/sar/calld" /* well-known server name */
#define CL_CALL "call" /* command for server */

extern char escapec; /* tilde for local commands */
extern char *src; /* for take and put commands */
extern char *dst; /* for take and put commands */

int call(const char *);
int doescape(int);
void loop(int);
int prompt_read(char *, int (*)(int, char **));
void put(int);
void take(int);
int take_put_args(int, char **);

Figure 28 The call.h header

The command for the server and the server’s well-known name have to correspond to
the values in Figure 8.

Figure 29 shows the main function.

#include "call.h"

char escapec = ’˜’;
char *src;
char *dst;

static void usage(char *);

int
main(int argc, char *argv[])
{

int c, remfd, debug;
char args[MAXLINE];

args[0] = 0; /* build arg list for conn server here */
opterr = 0; /* don’t want getopt() writing to stderr */
while ((c = getopt(argc, argv, "des:o")) != EOF) {

switch (c) {
case ’d’: /* debug */

debug = 1;
strcat(args, "-d ");
break;

case ’e’: /* even parity */
strcat(args, "-e ");
break;

case ’o’: /* odd parity */



42 A Modem Dialer The Lost Chapter

strcat(args, "-o ");
break;

case ’s’: /* speed */
strcat(args, "-s ");
strcat(args, optarg);
strcat(args, " ");
break;

case ’?’:
usage("unrecognized option");

}
}
if (optind < argc)

strcat(args, argv[optind]); /* name of host to call */
else

usage("missing <hostname> to call");

if ((remfd = call(args)) < 0) /* place the call */
exit(1); /* call() prints reason for failure */

printf("Connected\n");
if (tty_raw(STDIN_FILENO) < 0) /* user’s tty to raw mode */

err_sys("tty_raw error");
if (atexit(tty_atexit) < 0) /* reset user’s tty on exit */

err_sys("atexit error");

loop(remfd); /* and do it */

printf("Disconnected\n\r");
exit(0);

}

static void
usage(char *msg)
{

err_quit("%s\nusage: call -d -e -o -s<speed> <hostname>", msg);
}

Figure 29 The main function

The main function processes the command-line arguments, saving them in the array
args, which is sent to the server. The function call contacts the server and returns the
file descriptor to the remote system.

The line discipline module above the terminal (Figure 26) is set to noncanonical
mode using the tty_raw function (Figure 18.20). To reset the terminal when we’re
done we establish the function tty_atexit as an exit handler.

The function loop is then called to copy everything that we type at the terminal to
the modem and everything from the modem to the terminal.

The call function in Figure 30 contacts the server to obtain a file descriptor for the
modem. As we said earlier, it takes only a dozen lines of code to contact the server to
obtain the descriptor.



Section 8 Client Source Code 43

#include "call.h"
#include <sys/uio.h> /* struct iovec */

/*
* Place the call by sending the "args" to the calling server,
* and reading a file descriptor back.
*/
int
call(const char *args)
{

int csfd, len;
struct iovec iov[2];

/*
* Create connection to connection server.
*/

if ((csfd = cli_conn(CS_CALL)) < 0)
err_sys("cli_conn error");

iov[0].iov_base = CL_CALL " ";
iov[0].iov_len = strlen(CL_CALL) + 1;
iov[1].iov_base = (char *) args;
/* null at end of args always sent */
iov[1].iov_len = strlen(args) + 1;
len = iov[0].iov_len + iov[1].iov_len;
if (writev(csfd, &iov[0], 2) != len)

err_sys("writev error");

/*
* Read back the descriptor. Returned errors are handled
* by write().
*/

return(recv_fd(csfd, write));
}

Figure 30 The call function

The function loop handles the I/O multiplexing between the two input streams
and the two output streams. We can use either poll or select, depending what the
local system provides. Figure 31 shows an implementation using poll.

#include "call.h"
#include <poll.h>

#define BUFFSIZE 512

/*
* Copy everything from stdin to "remfd",
* and everything from "remfd" to stdout.
*/
void
loop(int remfd)



44 A Modem Dialer The Lost Chapter

{
int bol, n, nread;
char c;
char buff[BUFFSIZE];
struct pollfd fds[2];

/*
* Set stdout unbuffered for printfs in take() and put().
*/

setbuf(stdout, NULL);
fds[0].fd = STDIN_FILENO; /* user’s terminal input */
fds[0].events = POLLIN;
fds[1].fd = remfd; /* input from remote (modem) */
fds[1].events = POLLIN;

for ( ; ; ) {
if (poll(fds, 2, -1) <= 0)

err_sys("poll error");
if (fds[0].revents & POLLIN) { /* data to read on stdin */

if (read(STDIN_FILENO, &c, 1) != 1)
err_sys("read error from stdin");

if (c == escapec && bol) {
if ((n = doescape(remfd)) < 0)

break; /* user wants to terminate */
else if (n == 0)

continue; /* escape seq has been processed */

/* else char following escape wasn’t special, */
/* so return and echo it below. */
c = n;

}
if (c == ’\r’ || c == ’\n’)

bol = 1;
else

bol = 0;
if (write(remfd, &c, 1) != 1)

err_sys("write error");
}
if (fds[0].revents & POLLHUP)

break; /* stdin hangup -> done */
if (fds[1].revents & POLLIN) { /* data to read from remote */

if ((nread = read(remfd, buff, BUFFSIZE)) <= 0)
break; /* error or EOF, terminate */

if (writen(STDOUT_FILENO, buff, nread) != nread)
err_sys("writen error to stdout");

}
if (fds[1].revents & POLLHUP)

break; /* modem hangup -> done */
}

}

Figure 31 The loop function using the poll function



Section 8 Client Source Code 45

The basic loop of this function just waits for data to appear from either the terminal or
the modem. When data is read from the terminal, it’s just copied to the modem and
vice versa. The only complication is to recognize the escape character (the tilde) as the
first character of a line.

Note that we read one character at a time from the terminal (standard input), but
up to one buffer at a time from the modem. One reason for the single character at a
time from the terminal is because we have to look at every character to know when a
new line begins, to recognize the special commands. Although this character-at-a-time
I/O is expensive in terms of CPU time (recall Figure 3.5), there is usually far less input
from the terminal than from the remote system. (In remote login sessions using this
program measured by the author, there are around 100 characters output by the remote
host for every character input.)

When the escape character is seen, doescape is called to process the command
(Figure 32). We support only five commands. Simple commands are handled directly
in this function, while the more complicated take and put commands are handled by
separate functions (take and put).

• A period terminates the client. For some devices, such as a laser printer, this is
the only way to terminate the client. When we’re logged into a remote system,
such as in Figure 26, logging out from that system usually causes the remote
modem to drop the phone line, causing a hangup to be received on the modem
descriptor by the loop function.

• If the system supports job control we recognize the job-control suspend
character and suspend the client. Note that it is simpler for us to recognize this
character directly and stop ourselves than to have the line discipline recognize
the character and generate the SIGSTOP signal (compare with Figure 10.30). We
have to reset the terminal mode before stopping ourselves, and reset it when
we’re continued.

• A pound sign generates a BREAK on the modem descriptor. We use the
POSIX.1 tcsendbreak function to do this (Section 18.8). The BREAK condition
often causes the remote system’s getty or ttymon program to switch line
speeds (Section 9.2).

• The take and put commands require separate functions to be called. The way
to distinguish between the two commands is to remember that the command
describes what the client is doing on the local system: taking a file from the
remote system or putting a file to the remote system.

#include "call.h"

/*
* Called when first character of a line is the escape character
* (tilde). Read the next character and process. Return -1
* if next character is "terminate" character, 0 if next character
* is valid command character (that’s been processed), or next
* character itself (if the next character is not special).
*/



46 A Modem Dialer The Lost Chapter

int
doescape(int remfd)
{

char c;

if (read(STDIN_FILENO, &c, 1) != 1) /* next input char */
err_sys("read error from stdin");

if (c == escapec) { /* two in a row -> process as one */
return(escapec);

} else if (c == ’.’) { /* terminate */
write(STDOUT_FILENO, "˜.\n\r", 4);
return(-1);

#ifdef VSUSP
} else if (c == tty_termios()->c_cc[VSUSP]) { /* suspend client */

tty_reset(STDIN_FILENO); /* restore tty mode */
kill(getpid(), SIGTSTP); /* suspend ourself */
tty_raw(STDIN_FILENO); /* and reset tty to raw */
return(0);

#endif

} else if (c == ’#’) { /* generate break */
tcsendbreak(remfd, 0);
return(0);

} else if (c == ’t’) { /* take a file from remote host */
take(remfd);
return(0);

} else if (c == ’p’) { /* put a file to remote host */
put(remfd);
return(0);

}

return(c); /* not a special character */
}

Figure 32 The doescape function

Figure 33 shows the code required to handle the take command. The function
take first calls prompt_read (which we show in Figure 34) to echo ˜[take] in
response to the ˜t command. The prompt_read function then reads a line of input
containing the source pathname (the file on the remote host) and the destination
pathname (the file on the local host) from the terminal. The results are stored in the
global variables src and dst.

#include "call.h"

#define CTRLA 001 /* eof designator for take */

static int rem_read(int);
static char rem_buf[MAXLINE];
static char *rem_ptr;



Section 8 Client Source Code 47

static int rem_cnt = 0;

/*
* Copy a file from remote to local.
*/
void
take(int remfd)
{

int n, linecnt;
char c;
char cmd[MAXLINE];
FILE *fpout;

if (prompt_read("˜[take] ", take_put_args) < 0) {
printf("usage: [take] <sourcefile> <destfile>\n\r");
return;

}

/*
* Open local output file.
*/

if ((fpout = fopen(dst, "w")) == NULL) {
err_ret("can’t open %s for writing", dst);
putc(’\r’, stderr);
fflush(stderr);
return;

}

/*
* Send cat/echo command to remote host.
*/

sprintf(cmd, "cat %s; echo %c\r", src, CTRLA);
n = strlen(cmd);
if (write(remfd, cmd, n) != n)

err_sys("write error");

/*
* Read echo of cat/echo command line from remote host
*/

rem_cnt = 0; /* initialize rem_read() */
for ( ; ; ) {

if ((c = rem_read(remfd)) == 0)
return; /* line has dropped */

if (c == ’\n’)
break; /* end of echo line */

}

/*
* Read file from remote host.
*/

linecnt = 0;
for ( ; ; ) {



48 A Modem Dialer The Lost Chapter

if ((c = rem_read(remfd)) == 0)
break; /* line has dropped */

if (c == CTRLA)
break; /* all done */

if (c == ’\r’)
continue; /* ignore returns */

if (c == ’\n’) /* but newlines are written to file */
printf("\r%d", ++linecnt);

if (putc(c, fpout) == EOF)
break; /* output error */

}
if (ferror(fpout) || fclose(fpout) == EOF) {

err_msg("output error to local file");
putc(’\r’, stderr);
fflush(stderr);

}
c = ’\n’;
write(remfd, &c, 1);

}

/*
* Read from remote. Read up to MAXLINE, but parcel out one
* character at a time.
*/
int
rem_read(int remfd)
{

if (rem_cnt <= 0) {
if ((rem_cnt = read(remfd, rem_buf, MAXLINE)) < 0)

err_sys("read error");
else if (rem_cnt == 0)

return(0);
rem_ptr = rem_buf;

}
rem_cnt--;
return(*rem_ptr++ & 0177);

}

Figure 33 Processing the take command

After the take function opens the local file for writing it sends the following
command to the remote host:

cat sourcefile ; echo ˆA

This causes the remote host to execute the cat command, followed by an echo of the
ASCII Control-A character. We look for this Control-A in all the characters that are
returned by the remote host, and when we encounter it, we know the file transfer is
complete. Note that we also have to read back the echo of the command line that we
send to the remote host. Only after that echo do we start receiving the output of the
cat command.



Section 8 Client Source Code 49

While we’re reading the remote file we look for newline characters and count the
lines returned. We display these at the left margin, overwriting each line number with
the next (since we terminate the line in the printf with a carriage return only and not
a newline). This provides a visual display on the terminal of the progress of the file
transfer and a final line count at the end.

This source file also contains the function rem_read, which is called to read each
character from the remote host. We read up to one buffer at a time, but return only one
character at a time to the caller.

Originally the take command was written to read one character at a time, similar
to what cu and tip have historically done. This was OK 23 years ago, when 1200 baud
modems were considered fast. But as modems became faster, delivering characters to
the terminal device driver at 38400 baud and above, characters could get lost.

The solution to this problem is to code the rem_read function to read up to a buffer
at a time. Doing this reduces the system CPU time and provides more reliable transfer.

Note that the number of bytes returned by read can be greater than 1 even though
the line discipline module for the modem has its MIN set to 1 and TIME set to 0 by the
tty_open function (Figure 21). This is case B from Section 18.11. This illustrates that
MIN is only a minimum. If we ask for more than the minimum, and the bytes are ready
to be read, they’re returned. We are not restricted to character-at-a-time input when we
set MIN to 1.

Figure 34 shows the two ancillary functions take_put_args and prompt_read.
The latter is called from both the take and put functions, with the former as an
argument (that is then called by the buf_args function, Figure 17.32).

#include "call.h"

/*
* Process the argv-style arguments for take or put commands.
*/
int
take_put_args(int argc, char **argv)
{

if (argc == 1) {
src = dst = argv[0];
return(0);

} else if (argc == 2) {
src = argv[0];
dst = argv[1];
return(0);

}
return(-1);

}

/*
* Can’t be automatic; src/dst point into here.
*/
static char cmdargs[MAXLINE];

/*
* Read a line from the user. Call our buf_args() function to



50 A Modem Dialer The Lost Chapter

* break it into an argv-style array, and call userfunc() to
* process the arguments.
*/
int
prompt_read(char *prompt, int (*userfunc)(int, char **))
{

int n;
char c, *ptr;

tty_reset(STDIN_FILENO); /* allow user’s editing chars */

n = strlen(prompt);
if (write(STDOUT_FILENO, prompt, n) != n)

err_sys("write error");

ptr = cmdargs;
for ( ; ; ) {

if ((n = read(STDIN_FILENO, &c, 1)) < 0)
err_sys("read error");

else if (n == 0)
break;

if (c == ’\n’)
break;

if (ptr < &cmdargs[MAXLINE-2])
*ptr++ = c;

}
*ptr = 0; /* null terminate */

tty_raw(STDIN_FILENO); /* reset tty mode to raw */

/*
* Return whatever userfunc() returns.
*/

return(buf_args(cmdargs, userfunc));
}

Figure 34 The take_put_args and prompt_read functions

The function prompt_read reads a line of input from the terminal, and then calls
buf_args to split the line into a standard argument list that is processed by
take_put_args. Note that the terminal is reset to canonical mode to read the
arguments, allowing the use of the standard editing characters while entering the line.

The final client function is put, shown in Figure 35. It is called to copy a local file to
the remote host.

#include "call.h"

/*
* Copy a file from local to remote.
*/
void
put(int remfd)
{



Section 8 Client Source Code 51

int i, n, linecnt;
char c, cmd[MAXLINE];
FILE *fpin;

if (prompt_read("˜[put] ", take_put_args) < 0) {
printf("usage: [put] <sourcefile> <destfile>\n\r");
return;

}

/*
* Open local input file.
*/

if ((fpin = fopen(src, "r")) == NULL) {
err_ret("can’t open %s for reading", src);
putc(’\r’, stderr);
fflush(stderr);
return;

}

/*
* Send stty/cat/stty command to remote host.
*/

sprintf(cmd, "stty -echo; cat >%s; stty echo\r", dst);
n = strlen(cmd);
if (write(remfd, cmd, n) != n)

err_sys("write error");
tcdrain(remfd); /* wait for our output to be sent */
sleep(4); /* and let stty take effect */

/*
* Send file to remote host.
*/

linecnt = 0;
for ( ; ; ) {

if ((i = getc(fpin)) == EOF)
break; /* all done */

c = i;
if (write(remfd, &c, 1) != 1)

break; /* line has probably dropped */
if (c == ’\n’) /* increment and display line counter */

printf("\r%d", ++linecnt);
}

/*
* Send EOF to remote, to terminate cat.
*/

c = tty_termios()->c_cc[VEOF];
write(remfd, &c, 1);
tcdrain(remfd); /* wait for our output to be sent */
sleep(2);
tcflush(remfd, TCIOFLUSH); /* flush echo of stty/cat/stty */
c = ’\n’;
write(remfd, &c, 1);



52 A Modem Dialer The Lost Chapter

if (ferror(fpin)) {
err_msg("read error of local file");
putc(’\r’, stderr);
fflush(stderr);

}
fclose(fpin);

}

Figure 35 The put function

As with the take command, we send a command string to the remote system. This
time the command is

stty -echo; cat > destfile ; stty echo

We have to turn echo off, otherwise the entire file would also be sent back to us. To
terminate the cat command we send the end-of-file character (often Control-D). This
requires that the same end-of-file character be used on both the local system and the
remote system. Additionally, the file cannot contain the ERASE or KILL characters in
use on the remote system.

9 Summar y

In this chapter we’ve looked at two different programs: a daemon server that dials a
modem and a remote login program that uses the server to contact a remote system
that’s connected through a terminal port. The server can be used by other programs
that need to contact remote systems or hardware devices connected through
asynchronous terminal ports.

The design of the server was similar to the open server in Section 17.6 and required
the use of full-duplex pipes, unique per-client connections to the server, and the passing
of file descriptors. These advanced IPC features allow us to build client–server
applications with many desirable features, as described in Section 3.

The client is similar to the cu and tip programs provided by many UNIX systems,
but in our example we didn’t have to worry about dialing a modem, interfering with
UUCP lock files, setting the characteristics of the modem’s line discipline module, and
the like. The server handles all these details. It let us concentrate on the real issues of
the client, such as providing a reliable file transfer mechanism.

10 References

Presotto, D. L., andRitchie, D. M. 1990. ‘‘Interprocess Communication in the Ninth
Edition UNIX System,’’ Software Practice and Experience, vol. 20, no. S1,
pp. S1/3-S1/17 (June).

Redman, B. E. 1989. ‘‘UUCP UNIX-to-UNIX Copy,’’ Unix Networking, ed. S. G. Kochan,
andP. H. Wood, pp. 5-48. Howard W. Sams and Company, Indianapolis, IN.



The Lost Chapter Exercises 53

Exercises
1 How can we avoid step 0 (starting the server by hand) in Section 3?

2 What happens if we don’t set optind to 1 in Figure 11?

3 What happens if someone edits the Systems file between the time request (Figure 17)
forks a child and the time the child terminates with a status of 1?

4 In Section 7.8 we said to be careful any time we use pointers into a region that gets
realloced, since the region can move around in memory on each call to realloc. Why
can we use the pointer cliptr in Figure 10 when the client array is manipulated by
realloc?

5 What happens if either of the pathname arguments to the take and put commands contain
a semicolon?

6 Modify the server to read its three data files once when it starts, storing them in memory. If
the files are modified, how should the server handle this?

7 In Figure 30 why do we cast the argument args when filling in the structure for writev?

8 Implement Figure 31 using select instead of poll.

9 How can you verify that the file being sent with the put command does not contain
characters that will be interpreted by the line discipline on the remote system?

10 The faster the dialing function recognizes that a dial has failed, the faster it can proceed to
the next possible entry in the Systems file. For example, if we can determine that the
remote phone is busy and terminate before the timer in expect_str expires, we can save
15 or 20 seconds. To handle these types of errors, the 4.3BSD UUCP expect–send strings
allow an expect string of ABORT, followed by a string that if matched, aborts the current
dial. For example, right before the final expect string CONNECT\sFAST in Figure 4 we
would like to add

ABORT BUSY

Implement this feature.


